On the Origins of Eccentric Close-in Planets
نویسندگان
چکیده
Strong tidal interaction with the central star can circularize the orbits of close-in planets. With the standard tidal quality factor Q of our solar system, estimated circularization times for close-in extrasolar planets are typically shorter than the ages of the host stars. While most extrasolar planets with orbital radii a . 0.1AU indeed have circular orbits, some close-in planets with substantial orbital eccentricities have recently been discovered. This new class of eccentric close-in planets implies that either their tidal Q factor is considerably higher, or circularization is prevented by an external perturbation. Here we constrain the tidal Q factor for transiting extrasolar planets by comparing their circularization times with accurately determined stellar ages. Using estimated secular perturbation timescales, we also provide constraints on the properties of hypothetical second planets exterior to the known ones. Subject headings: planetary systems
منابع مشابه
Extreme Habitability: Formation of Habitable Planets in Systems with Close-in Giant Planets and/or Stellar Companions
With more than 260 extrasolar planetary systems discovered todate, the search for habitable planets has found new grounds. Unlike our solar system, the stars of many of these planets are hosts to eccentric or close-in giant bodies. Several of these stars are also members of moderately close (<40 AU) binary or multi-star systems. The formation of terrestrial objects in these ”extreme” environmen...
متن کاملDetectability of Extrasolar Planets in Radial Velocity Surveys
Radial velocity surveys are beginning to reach the time baselines required to detect Jupiter analogs, as well as sub-Saturn mass planets in close orbits. Therefore it is important to understand the sensitivity of these surveys at long periods and low amplitudes. In this paper, I derive analytic expressions for the detectability of planets at both short and long periods, for circular and eccentr...
متن کاملOrigins of Eccentric Extrasolar Planets: Testing the Planet–planet Scattering Model
Any planetary system with two or more giant planets may become dynamically unstable, leading to collisions or ejections through strong planet–planet scattering. Following an ejection, the other planet is left in a highly eccentric orbit. Previous studies for simple initial configurations with two equalmass planets revealed two discrepancies between the results of numerical simulations and the o...
متن کاملEccentric Behavior of Eccentric Planets
Recent increases in the discovery of high multiplicity Sub-Jovian planetary systems, in addition to discoveries of giant planets of high eccentricities in these multiple body systems, lead to questions into their origins and evolution. The study of secular interactions is not new, however it has only recently been applied to exoplanetary systems. These systems sometimes fall far from the classi...
متن کاملDynamical Instabilities in Extrasolar Planetary Systems
Instabilities and strong dynamical interactions between multiple giant planets have been proposed as a possible explanation for the surprising orbital properties of extrasolar planetary systems. In particular, dynamical instabilities seem to provide a natural mechanism for producing the highly eccentric orbits seen in many systems. Previously, we performed numerical integrations for the dynamic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008